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Abstract. In a recent paper [A. Santos, G. M. Kremer, and V. Garzó, Prog. Theor. Phys. Suppl. 184, 31-48 (2010)] the
collisional energy production rates associated with the translational and rotational granular temperatures in a granular fluid
mixture of inelastic rough hard spheres have been derived. In the present paper the energy production rates are explicitly
decomposed into equipartition rates (tending to make all the temperatures equal) plus genuine cooling rates (reflecting
the collisional dissipation of energy). Next the homogeneous free cooling state of a binary mixture is analyzed, with
special emphasis on the quasi-smooth limit. A previously reported singular behavior (according to which a vanishingly
small amount of roughness has a finite effect, with respect to the perfectly smooth case, on the asymptotic long-time
translational/translational temperature ratio) is further elaborated. Moreover, the study of the time evolution of the temperature
ratios shows that this dramatic influence of roughness already appears in the transient regime for times comparable to the
relaxation time of perfectly smooth spheres.
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INTRODUCTION

The simplest model of a granular fluid consists of a system of identical, inelastic smooth hard spheres with a
constant coefficient of normal restitution [1]. Obviously, the model can be made closer to reality by introducing
extra ingredients. In particular, polydispersity and roughness are especially relevant because they unveil an inherent
breakdown of energy equipartition in granular fluids, even in homogeneous and isotropic states [2, 3, 4, 5, 6, 7].

In this work a fluid mixture of inelastic rough hard spheres characterized by mutual coefficients of normal restitution
{αi j} and tangential restitution {βi j} is considered. First, a recent derivation by kinetic-theory arguments [8] of the
collisional energy production rates (ξ tr

i j and ξ rot
i j ) associated with the translational and rotational temperatures (T tr

i and
T rot

i ) is recalled and the energy production rates are decomposed into equipartition and cooling rates. Next, the results
are applied to a binary mixture and the asymptotic long-time values and the time evolution of the three independent
temperature ratios T tr

2 /T tr
1 , T rot

2 /T rot
1 , and T rot

1 /T tr
1 and are analyzed in the homogeneous and isotropic free cooling

state Special attention is paid to a paradoxical effect: the asymptotic long-time values of the temperature ratio T tr
2 /T tr

1
in the nearly-smooth limit (βi j →−1) differ from those obtained for purely smooth spheres (βi j =−1).

COLLISIONAL ENERGY PRODUCTION RATES

Let us consider a multi-component granular gas made of hard spheres of masses {mi}, diameters {σi}, and moments
of inertia {Ii =

1
4 miσ2

i κi}. The value of the dimensionless parameter κi depends on the mass distribution within the
sphere and runs from the extreme values κi = 0 (mass concentrated on the center) to κi =

2
3 (mass concentrated on the

surface). Collisions between a sphere of component i and a sphere of component j are characterized by a coefficient
of normal restitution αi j and a coefficient of tangential restitution βi j. The former coefficient ranges from αi j = 0
(perfectly inelastic particles) to αi j = 1 (perfectly elastic particles), while the latter runs from βi j = −1 (perfectly
smooth particles) to βi j = 1 (perfectly rough particles). The total (translational plus rotational) kinetic energy is
dissipated upon collisions unless αi j = 1 and βi j = ±1. The particular case of one-component systems has been
widely studied in the literature (see, for instance, Refs. [5, 6, 7]).

Let fi(ri,vi,ωωω i; t) and fi j(ri,vi,ωωω i;r j,v j,ωωω j; t) be the one-body and two-body distribution functions, respectively,
where vi is the velocity of the center of mass and ωωω i is the angular velocity. By starting from the Liouville equation
and following standard steps, one can derive the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy. The



first equation of the hierarchy reads [8]

∂t fi(vi,ωωω i)+vi ·∇ fi(vi,ωωω i) = ∑
j

Ji j[vi,ωωω i| fi j], (1)

Ji j[vi,ωωω i| fi j] =σ2
i j

∫
dv j

∫
dωωω j

∫
dσ̂σσ Θ(vi j ·σ̂σσ)(vi j ·σ̂σσ)

[
1

α2
i jβ 2

i j
fi j(ri,v′′i ,ωωω ′′

i ;r−i ,v
′′
j ,ωωω ′′

j )− fi j(ri,vi,ωωω i;r+i ,v j,ωωω j)

]
.

(2)
Here, Ji j is the collision operator, σi j ≡ (σi +σ j)/2, vi j ≡ vi −v j, r±i ≡ ri ±σi jσ̂σσ , and the double primes denote pre-
collisional quantities giving rise to unprimed quantities as post-collisional values. The explicit form of the restituting
collision rules can be found in Ref. [8].

Given an arbitrary one-body function ψi(vi,ωωω i), we define its average as

〈ψi(vi,ωωω i)〉 ≡ 1
ni

∫
dvi

∫
dωωω i ψi(vi,ωωω i) fi(vi,ωωω i), ni =

∫
dvi

∫
dωωω i fi(vi,ωωω i), (3)

where ni is the number density of component i. The rate of change of the quantity ψi(vi,ωωω i) due to collisions with
particles of component j is

Ji j[ψi(vi,ωωω i)]≡ 1
ni

∫
dvi

∫
dωωω i ψi(vi,ωωω i)Ji j[vi,ωωω i| fi j]. (4)

In particular, the partial temperatures associated with the translational and rotational degrees of freedom are

T tr
i =

mi

3
〈(vi −u)2〉, T rot

i =
Ii

3
〈ω2

i 〉, (5)

where u = ∑i mini〈vi〉/∑i mini is the flow velocity. The corresponding collisional rates of change define the (partial)
collisional energy production rates as

ξ tr
i = ∑

j
ξ tr

i j , ξ rot
i = ∑

j
ξ rot

i j , ξ tr
i j ≡− mi

3T tr
i

Ji j[(vi −u)2], ξ rot
i j ≡− Ii

3T rot
i

Ji j[ω2
i ]. (6)

The global temperature of the gas and its associated net cooling rate are

T = ∑
i

ni

2n

(
T tr

i +T rot
i

)
, ζ = ∑

i, j

ni

2nT

(
T tr

i ξ tr
i j +T rot

i ξ rot
i j
)
, (7)

where n=∑i ni is the total number density. Note that, as usually done in the literature on granular gases, the Boltzmann
constant has been absorbed in the definitions of T tr

i , T rot
i , and T , so that these quantities have dimensions of energy.

The energy production rates ξ tr
i j and ξ rot

i j defined in Eq. (6) do not have a definite sign. They can be decomposed
into two classes of terms: equipartition rates and cooling rates (see Fig. 1). The equipartition terms, which exist even
when energy is conserved by collisions (αi j = 1 and βi j =±1), tend to make temperatures equal [10]. Therefore, they
can be positive or negative depending on the signs of the differences T tr

i −T tr
j , T rot

i −T rot
j , and T tr

i −T rot
i . On the other

hand, the cooling terms reflect the collisional energy dissipation and thus they are positive if αi j < 1 and/or |βi j|< 1,
vanishing otherwise. Only the cooling terms in ξ tr

i j and ξ rot
i j contribute to the net cooling rate ζ .

The quantities Ji j[ψi(vi,ωωω i)] are functionals of the two-body distribution function fi j and therefore they are
generally rather intricate. Now, let us imagine that, instead of the full knowledge of fi j, we only have at our disposal
the local values of the two densities (ni and n j) and the four partial temperatures (T tr

i , T rot
i , T tr

j , and T rot
j ). Then, we

can get reasonable estimates of Ji j[ψi(vi,ωωω i)] from the replacement

fi j(vi,ωωω i;v j,ωωω j)→ nin jχi j

(
mim j

4π2T tr
i T tr

j

)3/2

exp

[
−mi

(vi −u)2

2T tr
i

−m j
(v j −u)2

2T tr
j

]
f rot
i (ωωω i) f rot

j (ωωω j), (8)

where χi j is the contact value of the pair correlation function. Equation (8) can be justified by maximum-entropy
arguments, except that here a Maxwellian form for the rotational probability densities f rot

i (ωωω i) and f rot
j (ωωω j) is not
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FIGURE 1. Scheme on the two classes of contributions (equipartition rates and cooling rates) to the energy production rates ξ tr
i j

and ξ rot
i j characterizing the effect on T tr

i and T rot
i , respectively, of collisions with particles of component j [9].

needed. The expressions for ξ tr
i j and ξ rot

i j derived from the replacement (8) and the assumption 〈vi〉= 〈v j〉 can be found
in Ref. [8]. Here, those expressions are recast into sums of equipartition and cooling rates as follows:

ξ tr
i j =

1+αi j

2
ξ (1)

i j +
1+βi j

2

[
ξ (2)

i j +κi
T rot

i
T tr

i
ξ (3)

i j

]
+ζ tr,1

i j +κi
T rot

i
T tr

i
ζ rot

i j , ξ rot
i j =

1+βi j

2
ξ (3)

i j +ζ rot
i j , (9)

ξ (1)
i j =

10
3

νi j
mim j

(mi +m j)2

T tr
i −T tr

j

T tr
i

, ξ (2)
i j =

10
3

νi j
m j

mi +m j

κi j

1+κi j

T tr
i −T rot

i
T tr

i
, (10)

ξ (3)
i j =

10
3

νi j

T rot
i

mim j

κiκ j(mi +m j)2

(
κi j

1+κi j

)2 [
T rot

i −T rot
j +κ j

(
T tr

i −T tr
j
)
+κ j(1+m j/mi)

(
T rot

i −T tr
i
)]
, (11)

ζ tr,1
i j =

5
6

νi j
1−α2

i j

T tr
i

mim2
j

(mi +m j)2

(
T tr

i
mi

+
T tr

j

m j

)
, (12)

ζ rot
i j =

5
6

νi j
1−β 2

i j

T rot
i

mim2
j

κi(mi +m j)2

(
κi j

1+κi j

)2
(

T tr
i

mi
+

T tr
j

m j
+

T rot
i

miκi
+

T rot
j

m jκ j

)
. (13)

In these equations, κi j ≡ κiκ j(mi +m j)/(κimi +κ jm j),

νi j ≡ 8
√

2π
5

χi jn jσ2
i j

√
T tr

i
mi

+
T tr

j

m j
(14)

is an effective collision frequency, and we have assumed 〈ωωω i〉 = 〈ωωω j〉 = 0. The quantities ξ (1,2,3)
i j represent equipar-

tition rates. They do not have a definite sign and vanish if all the temperatures are equal. The equipartition rate ξ (1)
tr

is always present (even for perfectly elastic spheres, αi j = 1) and tends to equilibrate both translational temperatures.
The rates ξ (2)

i j and ξ (3)
i j do not contribute in the case of smooth spheres (βi j = −1). The former tends to equilibrate

the translational and rotational temperatures of component i, while the latter tends to equilibrate both rotational tem-
peratures but is also affected by the other temperature differences. The quantities ζ tr,1

i j and ζ rot
i j , on the other hand, are

positive definite and represent cooling rates. The former only vanishes if the spheres are elastic, whilst the latter only
vanishes if the spheres are either perfectly smooth (βi j =−1) or perfectly rough (βi j = 1). It is straightforward to check

that niT tr
i ξ (1)

i j + n jT tr
j ξ (1)

ji = 0 and ni

[
T tr

i ξ (2)
i j +(1+κi)T rot

i ξ (3)
i j

]
+ n j

[
T tr

j ξ (2)
ji +(1+κ j)T rot

j ξ (3)
ji

]
= 0. Therefore, as

expected, the equipartition rates do not contribute to the net cooling rate. The latter is given by

ζ = ∑
i j

ni

2nT

[
T tr

i ζ tr,1
i j +(1+κi)T rot

i ζ rot
i j

]

=
5
24 ∑

i j

ni

nT
νi j

mim j

mi +m j

[
(1−α2

i j)

(
T tr

i
mi

+
T tr

j

m j

)
+

κi j

1+κi j
(1−β 2

i j)

(
T tr

i
mi

+
T tr

j

m j
+

T rot
i

miκi
+

T rot
j

m jκ j

)]
. (15)
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FIGURE 2. Schematic representation of the energy transfer channels in the free cooling state of a binary mixture. The left
diagram corresponds to perfectly smooth particles (β =−1), in which case both rotational temperatures are completely decoupled
each other and also from the translational temperatures, so they do not change with time. The right diagram corresponds to quasi-
smooth particles (β &−1), in which case weak channels of energy transfer exist and also the rotational temperatures are subject to
a weak cooling.

HOMOGENEOUS FREE COOLING STATE

In the homogeneous and isotropic free cooling state the evolution equations for the total and partial temperatures are

∂tT =−ζ T, ∂t ln
T tr

i
T

=−(
ξ tr

i −ζ
)
, ∂t ln

T rot
i
T

=−(
ξ rot

i −ζ
)
. (16)

The first equation describes the monotonic decrease of temperature (unless αi j = 1 and βi j =±1 for all the pairs). The
remaining equations show that the temperature ratios T tr

i /T and T rot
i /T decrease or increase, depending on the sign

of the differences ξ tr
i −ζ and ξ rot

i −ζ , respectively. After a certain transient stage, those temperature ratios eventually
reach constant values, while the total temperature keeps decreasing following Haff’s law T (t) = T (t0) [1+ζ (t0)t/2]−2.
In this asymptotic regime one has equal production rates, i.e., ξ tr

1 = ξ tr
2 = · · ·= ξ tr

s = ξ rot
1 = ξ rot

2 = · · ·= ξ rot
s , where s is

the number of components. Use of expressions (9)–(13) allows one to get an algebraic set of equations whose solution
gives the asymptotic long-time values of the temperature ratios.

In the particular case of a binary mixture (s = 2), it is convenient to choose the three relevant temperature ratios as
T tr

2 /T tr
1 , T rot

2 /T rot
1 , and T rot

1 /T tr
1 . The parameter space is twelve-dimensional: the three coefficients of normal restitution

(α11, α12, α22), the three coefficients of tangential restitution (β11, β12, β22), the two moment-of-inertia parameters (κ1
and κ2), the mass ratio (m2/m1), the size ratio (σ2/σ1), the concentration ratio (n2/n1) and the total packing fraction
φ = (π/6)(n1σ3

1 +n2σ3
2 ).

For the sake of illustration, here we particularize to an equimolar mixture where all the spheres are uniformly solid
and are made of the same material, the size of the spheres of one component being twice that of the other component.
More specifically, n1 = n2, α11 = α12 = α22 = α , β11 = β12 = β22 = β , κ1 = κ2 = 2

5 , σ2/σ1 = 2, and m2/m1 = 8.
Moreover, we consider a dilute granular gas (φ ¿ 1), so that χi j ≈ 1. Thus only the parameters α and β remain free.

In Ref. [8] it was observed that the asymptotic value of the translational/translational temperature ratio T tr
2 /T tr

1
exhibits a peculiar behavior in the smooth-sphere limit β → −1: it tends to a finite value different from (in fact
higher than) the value directly obtained in the case of perfectly smooth spheres [2]. Thus, a tiny amount of roughness
has dramatic effects on the temperature ratio T tr

2 /T tr
1 , producing an enhancement of non-equipartition. This singular

behavior of the case β =−1 in the free cooling state is further elaborated in this paper.
The physical origin of the singularity is the following one. If one strictly has β =−1, the rotational degrees of free-

dom are “frozen”, so that the rotational temperatures are finite while the translational temperatures keep decreasing.
The rotational/translational temperature ratios diverge but, since the spheres are perfectly smooth, there is no mecha-
nism transferring energy from the rotational to the translational degrees of freedom. This situation is represented by the
left diagram of Fig. 2. On the other hand, if β =−1+ε , where 0< ε ¿ 1, the huge rotational/translational temperature
ratios are eventually able to “feed” the weak energy channels connecting the rotational and translational temperatures
(see the right diagram of Fig. 2), thus producing a non-negligible effect (“ghost” effect) on the ratio T tr

2 /T tr
1 .

Let us see this in more detail. In the limit β → −1 one can see that the rotational/translational temperature
ratios diverge as T rot

1 /T tr
1 ≈ θ1ε−1 and T rot

2 /T tr
1 ≈ θ2ε−2. It can be found that the energy production rates behave as

ξ tr
1 /ν11 ≈ F tr

1 (T tr
2 /T tr

1 ,θ2), ξ tr
2 /ν11 ≈ F tr

2 (T tr
2 /T tr

1 ,θ2), ξ rot
1 /ν11 ≈ F rot

1 (T tr
2 /T tr

1 ,θ2/θ1)ε , and ξ rot
2 /ν11 ≈ F rot

2 (T tr
2 /T tr

1 )ε ,
where F tr,rot

1,2 are explicit functions of the indicated arguments. Since both rotational production rates vanish in the
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FIGURE 3. Plot of the asymptotic long-time values of the temperature ratios T tr
2 /T tr

1 (left panel), (1+β )T rot
2 /T rot

1 (middle panel),
and (1+β )T rot

1 /T tr
1 (right panel) as functions of α for β = −0.8, −0.85, −0.9, −0.95, and in the limit β →−1. In the left panel

the translational/translational ratio for the strict case of perfectly smooth spheres (β =−1) is also plotted.

0 50 100 150 200
0.1

1

10

100

1000

0 50 100 150 200
1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200
1

10

100

1000

1E4

1E5

T ro
t

2
/T

 ro
t

1
 

=-1

=-0.99
=-0.98

=-0.95

=-1

=-0.99
=-0.98

T tr 2
/T

 tr 1

=-0.95
=-1

=-0.99

=-0.98

=-0.95

T ro
t

1
/T

 tr 1
 

FIGURE 4. Time evolution of the temperature ratios T tr
2 /T tr

1 (left panel), T rot
2 /T rot

1 (middle panel), and T rot
1 /T tr

1 (right panel) for
α = 0.5 and β =−0.95, −0.98, −0.99, and −1. The initial state is an equipartition one, i.e., T tr

1 (0) = T tr
2 (0) = T rot

1 (0) = T rot
2 (0).

limit ε → 0, the condition of equal production rates implies that F tr
1 (T tr

2 /T tr
1 ,θ2) = 0, F tr

2 (T tr
2 /T tr

1 ,θ2) = 0, and
F rot

1 (T tr
2 /T tr

1 ,θ2/θ1) = F rot
2 (T tr

2 /T tr
1 ). The first two conditions yield T tr

2 /T tr
1 and θ2. Once obtained, the third condition

gives θ1. In the pure smooth-sphere problem, only the translational degrees of freedom matter and therefore the
temperature ratio T tr

2 /T tr
1 is obtained from the condition ξ tr

1 = ξ tr
2 with 1+β = 0, which becomes F tr

1 (T tr
2 /T tr

1 ,0) =
F tr

2 (T tr
2 /T tr

1 ,0). Obviously, the obtained solution differs from that given by F tr
1 (T tr

2 /T tr
1 ,θ2) = F tr

2 (T tr
2 /T tr

1 ,θ2) = 0.
In the preceding discussion we have implicitly assumed that the spheres are inelastic (α < 1). In the perfectly elastic

case (α = 1), the scalings for the temperature ratios are quite different and turn out to be T tr
2 /T tr

1 = 1+ γε , T rot
1 /T tr

1 =
ϑ1ε , and T rot

2 /T tr
1 = ϑ2ε . The production rates behave as ξ tr

1 /ν11 ≈ Φtr
1 (γ)ε , ξ tr

2 /ν11 ≈ Φtr
2 (γ)ε , ξ rot

1 /ν11 ≈ Φrot
1 (ϑ1)ε ,

and ξ rot
2 /ν11 ≈ Φrot

2 (ϑ2)ε , where Φtr,rot
1.2 are linear functions. The coefficient γ is simply obtained from Φtr

1 (γ) = Φtr
2 (γ).

Once γ is known, ϑ1 and ϑ2 follow from Φrot
1 (ϑ1) = Φtr

1 (γ) and Φrot
2 (ϑ1) = Φtr

2 (γ), respectively.
Figure 3 shows the quantities T tr

2 /T tr
1 , (1+ β )T rot

2 /T rot
1 , and (1+ β )T rot

1 /T tr
1 as functions of α for several values

of β , including the limit β → −1. It is clearly observed that the translational/translational temperature ratio in the
limit β → −1 differs from the values obtained in the perfectly smooth case [2]. In the latter case, moreover, the
rotational temperatures T tr

1 and T rot
2 maintain their initial values and thus the scaled ratio (1+β )T rot

2 /T rot
1 vanishes,

while (1+β )T rot
1 /T tr

1 is indetermined.
Since the scaled energy production rates limt→∞ ξ tr,rot

1,2 /ν11 go to zero in the quasi-smooth limit β → −1, it
is reasonable to wonder whether the paradoxical singular effect, limt→∞ T tr

2 /T tr
1 |β→−1 6= limt→∞ T tr

2 /T tr
1 |β=−1, is

apparent only for times much longer than the characteristic relaxation time of T tr
2 /T tr

1 |β=−1. In order to investigate
this possible scenario, the set of three coupled equations ∂τ ln(T tr

2 /T tr
1 ) =−(ξ tr

2 −ξ tr
1 )/ν11, ∂τ ln(T rot

1 /T tr
1 ) =−(ξ rot

1 −
ξ tr

1 )/ν11, and ∂τ ln(T rot
2 /T tr

1 ) = −(ξ rot
2 − ξ tr

1 )/ν11 has been numerically solved for several values of β > −1, the



solution being compared with that of ∂τ ln(T tr
2 /T tr

1 ) =−(ξ tr
2 −ξ tr

1 )/ν11 at β =−1. Here, τ =
∫ t

0 dt ′ ν11(t ′) is a measure
of time in units of the accumulated number of 1–1 collisions. Figure 4 shows the time evolution of the three temperature
ratios for α = 0.5 and some representative values of β . We can observe that in the perfectly smooth case (β = −1)
the translational/translational temperature ratio monotonically increases until reaching a plateau value at τ ≈ 4, the
rotational/rotational ratio keeps its initial value, and the rotational/translational ratio increases exponentially with τ
(Haff’s law). The important feature in the cases β 6=−1 is that, while the relaxation time needed to reach the asymptotic
long-time values actually increases as 1+β decreases, the curves for T tr

2 /T tr
1 and T rot

1 /T tr
1 markedly differ from the

case of perfectly smooth spheres just after τ ≈ 4. Therefore, the dramatic difference between the quasi-smooth limit
(β → −1) and the perfectly smooth case (β = −1) manifests itself not only in the asymptotic long-time regime but
also in the transient regime for times comparable to the relaxation time of perfectly smooth spheres.

CONCLUSION

In this paper the homogeneous free cooling state of a binary granular gas made of inelastic rough hard spheres has
been analyzed. Special attention has been paid to the quasi-smooth limit (β → −1), where an interesting singular
phenomenon appears. It turns out that a vanishingly small amount of roughness has a significant effect on the
translational/translational temperature ratio, with respect to the strict perfectly smooth case (β =−1). This paradoxical
(“ghost”) phenomenon is essentially due to the fact that, even if β is close to −1, the transfer of energy from the
rotational to the translational degrees of freedom eventually becomes activated when the rotational temperatures are
much larger than the translational.

It is important to remark that this singular behavior of the smooth case is closely tied to the non-stationary character
of the free cooling state and thus disappears in homogeneous steady states. For instance, in a granular gas driven
by a white-noise thermostat, the stationarity conditions are (T tr

1 /m1)ξ tr
1 = (T tr

2 /m2)ξ tr
2 and ξ rot

1 = ξ rot
2 = 0. It is

straightforward to check that in this case the ratio T tr
2 /T tr

1 in the limit β →−1 coincides with that of β =−1 [4].
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